College of Engineering Department of Civil Engineering

CE 564 Advanced Solid Mechanics

	-		
Credit and Contact hours	3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Elective		
Course Description	Introduction to elasticity: stress; strain; equilibrium; compatibility; constitutive relations. Selected topics in advanced mechanics of materials: torsion of non- circular solid and thin-wall open and hollow sections; unsymmetrical bending; shear center; shear deformations in beams; curved beams; failure theories; beams on elastic foundations.		
Prerequisites or Co- requisites	None		
	Students completing this course successfully will be able to:		
	Course Learning Outcomes (CLOs)	Related Student Outcomes (SO)	
	CLO1. Recognize the principles of solid mechanics and apply them to formulate solid mechanics problems. K1	SO1	
	CLO2. Identify and apply failure criteria to multiaxial stress state. K1	SO1	
Course Learning Outcomes	CLO3. Solve problems involving stress and strains of deformable bodies; torsion problems; unsymmetrical bending; shear deformations in beams; curved beams and beams on elastic foundations. S1	SO2	
	CLO4. Idealize problems involving torsion of noncircular shafts; unsymmetrical bending and shear deformations of beams; curved beams and beams on elastic foundation. S1	SO2	
	CLO5. Use the appropriate analytical or numerical techniques, e.g. MATLAB to solve assigned problems. S1	SO2	
	CLO6. Select the appropriate failure criterion to evaluate design stresses of structural member. V2	SO7	
	SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems.		
Student Outcomes related to this	SO 2 Provide solutions for complex and real-life engineering problems through critical thinking and the use of modern engineering tools, and identify their impact on social, global, cultural, environmental, safety, and economic factors.		
Course	SO 7 Effectively manage, individually or in groups, specialized tasks and activities in coursework, projects, assignments, and research work with a high level of autonomy and responsibility.		
Topics Covered			

	List of Topics	Related CLOs
	1. Basic equations of elasticity	CLO 1
	2. Torsion of non-circular shafts	CLO 1, 3, 4, 5
	3. Torsion of thin-walled open and hollow sections	CLO 1, 3, 4
	4. Unsymmetrical bending and shear center	CLO 1, 3, 4
	5. Shear deformations in beams	CLO 1, 3, 4
	6. Bending of curved beams	CLO 1, 2, 3, 4
	7. Failure theories	CLO 1, 2, 5, 6
	8. Beams on elastic foundations	CLO 1, 3, 4, 5
Textbook(s) and Other Required Material	• A.P. Boresi, R.J. Schmidt, Advanced Mechanics of Materials, Sons, Inc., 6th Edition., 2003.	,
	 Ferdinand Beer, Mechanics of Materials, McGraw Hill, latest Free web book on Applied Mechanics of Solids by A.F. Bowe (http://solidmechanics.org/contents.php) 	
Grading System	Assignments	10%
	Lecture attendance	
	Midterm exam	40%
	Project presentation	10%
	Final exam	40%
Instructors	Prof. Husain Abbas; Office: 1A65; Email: habbas@ksu.edu.sa	
Date of Review	March, 2025	